The potential for lithoautotrophic life on Mars: application to shallow interfacial water environments.
نویسندگان
چکیده
We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe(2+) and metabolically required P, and typically amounted to approximately 800 pg of dry biomass/ml ( approximately 8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere--where oxygen can be accessed by microbes and microbes can be accessed by exploration-lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of approximately 0.1 mg of dry biomass/g of host material ( approximately 10(9) cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that these organisms would spend long periods in maintenance or survival modes, with instantaneous biomass comparable to or less than that observed in extreme environments on Earth.
منابع مشابه
No Stromatolites on Mars?
Stromatolites, photosynthetic microorganisms and Mars: Numerous upcoming martian missions will be searching for traces of life. With the observational instrumentation that will be available on future robotic missions, such as MSL and ExoMars, the most obvious traces to search for will be macroscopic to microscopic laminations produced by microbial mats, such as stromatolites. Stromatolites are ...
متن کاملLattice Boltzmann Method Application on Headwater at Lata Kinjang Waterfall, Malaysia
Headwater accident is a natural phenomenon that occurs in every flow channel, resulting in tremendous incidents that involve vulnerable lives and destruction of its surroundings. This study focuses on simulation of potential headwater accidents at Lata Kinjang waterfall (Perak, Malaysia) with the aim of understanding the behavior of headwater accidents from the hydraulic aspect. By deploying th...
متن کاملHydrothermal systems on Mars: an assessment of present evidence.
Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of ...
متن کاملA BOUNDARY-FITTED SHALLOW WATER MODEL OF SIMULATE TIDE AND SURGE FOR THE HEAD BAY OF BENGAL – APPLICATION TO CYCLONE SIDR (2007) AND AILA (2009)
Severe Tropical Cyclones associated with surges frequently hits the coastal region of Bangladesh. For a reliable hydrodynamic model to simulate the severity of such cyclones, it is necessary to incorporate the meteorological and hydrological inputs properly. In order to incorporate the coastlines and the island boundaries properly in the numerical scheme a very fine grid resolution along the co...
متن کاملAn Unusual Inverted Saline Microbial Mat Community in an Interdune Sabkha in the Rub' al Khali (the Empty Quarter), United Arab Emirates
Salt flats (sabkha) are a recognized habitat for microbial life in desert environments and as analogs of habitats for possible life on Mars. Here we report on the physical setting and microbiology of interdune sabkhas among the large dunes in the Rub' al Khali (the Empty Quarter) in Liwa Oasis, United Arab Emirates. The salt flats, composed of gypsum and halite, are moistened by relatively fres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Astrobiology
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2007